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a b s t r a c t 

Gender and ethnicity are significant characteristics of human beings. Using human facial data to clas- 

sify gender and ethnicity of people is important in facial analysis research. A novel method is proposed 

to address this issue. The method is based on a 3D nose shape organization structure called “3D nose 

shape net”. To construct the 3D nose shape net, a nose measurement method to determine the distances 

between different noses and to use the results to cluster noses is proposed. Using the nose clustering 

results, the 3D nose shape net is constructed. The proposed method uses only the nose data from the 3D 

face; it is robust to facial expressions and facilitates removal of the poses effect. The 3D nose shape net 

does not consider the texture information in the nose region; therefore it is robust to illumination and 

cosmetics on faces. Gender and ethnicity classification results are achieved in 3D nose shape net simul- 

taneously. The experimental 3D nose shape nets are built and tested using the FRGC2.0 and Bosphorus3D 

datasets. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Gender and ethnicity classification tasks are important in fa-

ial analysis works. In many applications such as face recogni-

ion, medical research, and anthropology studies, automatic gender

nd ethnicity classification provide necessary pre-process results

or precise statistical analysis. In most cases, humans can estimate

ender and ethnicity characteristics from human faces by vision

irectly. However, the estimate process by human vision is lim-

ted by some factors such as hair style, head poses, facial expres-

ions, illumination, and cosmetics. In 2D facial images, such factors

re difficult to remove. In recent years, 3D scanning equipment is

ecoming more popular and is being used in many applications,

nd constructing a gender and ethnicity classification framework

n 3D facial data is now feasible. Our method for gender and eth-

icity classification is based on 3D noses of 3D facial data. Using

D noses in classification tasks has several advantages: nose shape

s robust to facial expressions and is essentially unaffected by hair;

he nose region is robust to facial expressions; noses from peo-

le with different gender and ethnicity characteristics have obvious

ifferences, and are convenient to study. 

In this paper, we study the differences of noses from people

ith different gender and ethnicity characteristics. We build a 3D

ose shape net to achieve the goal. Constructing the 3D nose shape
✩ Conflict of interest. The authors declare no conflict of interest. 
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et consists of three main steps: 1:Pre-processing the 3D nose

egion — the pre-process includes 3D facial landmarks detection

nd face cropping. 2:Nose similarity measure — we extract certain

urves from the nose and map the curves in curve shape space to

easure curves distance in the shape space which can be used to

easure nose similarity. 3:3D nose shape net construction — we

onstruct a nose similarity measure matrix from a facial database

nd use the matrix to cluster different noses. The 3D nose shape

et is constructed based on the nose clustering results. In Fig. 1 ,

e show the flow process of the framework. In summary, our main

ontributions are as follows: 

1) We propose a 3D nose shape net which organizes different

nose shapes in a hierarchical structure. Through the 3D nose

shape net, the gender and ethnicity classification results can be

achieved at the same time. The classification process in the net

is based on simple statistical analysis of nose shapes, and does

not require complex learning algorithms. 

2) We propose a nose similarity measurement method. The mea-

surement method is based on the curves measurement in the

curve shape space. The measurement in the curve shape space

is not affected by 3D coordinates or the length of curves. There-

fore, the nose similarity measure method is not affected by the

curve representation in 3D space, and thus has more accurate

measurement results. 

3) We propose an automatic pipeline to construct the 3D nose

shape net. It includes pre-processing of 3D nose data, nose sim-

ilarity measurement, and nose clustering. The pipeline is fo-

cused on 3D nose shape analysis; it reduces the difficulty of

https://doi.org/10.1016/j.patrec.2018.11.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.11.010&domain=pdf
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Fig. 1. The pipeline for constructing the 3D nose shape net. 
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mesh reconstruction and repair. The nose shape is robust to fa-

cial expressions and is not affected by hair. 

The remaining parts of the paper are organized as follows. In

Section 2 , we present related work on facial classification and nose

analysis. In Section 3 , we illustrate the pre-processing of 3D nose

data. In Section 4 , we propose the nose similarity measure method.

In Section 5 , we show the 3D nose shape net construction and

classification method in the net. In Section 6 , we use our method

on the public facial databases FRGC2.0 and Bosphorus3D for exper-

iment. 

2. Related work 

With the development of face recognition technology, the re-

search into automatic facial data classification has become more

popular and significant. Basically, the related work can be divided

into three categories: 2D image-based, multi-modal facial data-

based, and 3D geometric feature-based. 

2D image based approaches build the gender or ethnicity clas-

sification framework from facial images. Most work used machine

learning technologies to build classifiers such as the Support Vec-

tor Machine (SVM) [1,4,5 and 9] , Linear Discriminant Analysis

(LDA) [3] , Principal Component Analysis (PCA) [8] , and the con-

volutional neural network (CNN) [10] . The facial features included

binary rectangle features [2] , facial landmarks [5,7] , Biologically-

Inspired Features [8] , demographic informative features [9] , the

Gabor filter process features [5,6] and the special curves [23] . The

features are based on pixels in facial images. There are several in-

fluencing factors that limit classification — illumination conditions,

hair occlusion, head poses, and facial expressions. Such factors are

difficult to remove at the pixel level. Therefore, such methods re-

quire high quality input facial images to achieve precise classifica-

tion results. 

Multi-modal facial data based approaches combine facial tex-

ture and shape information to establish gender or ethnicity clas-

sifier. Some works focused on image features such as Local bi-

nary pattern (LBP) [12,13 and 15] and local circular patterns (LCP)

[14] . The algorithms require supplemental 3D facial data. The clas-

sical learning frameworks were used to build classifiers, such as

Principal Geodesic Analysis (PGA) [11] , random forest [13] , Ad-
Boost [14] , and PCA [15] . Wu [11] proposed a gender classifica-

ion method based on 2.5D facial needle maps. The method fo-

used on facial shape modeling. The texture was used as auxiliary

nformation. The Multi-modal facial data based approaches con-

idered 2D texture and 3D shape in facial classifiers. The features

ere extracted by Multi-modal facial data analysis. The methods

ere more robust than 2D image based approaches; however, ef-

cient integration of 2D and 3D information for classification pur-

oses was difficult to achieve. The classification scheme depended

n the Multi-modal features, where features were extracted from

ingle mode and other auxiliary information. The classification per-

ormance was limited by the Multi-modal features and the fusion

lgorithm employed. 

3D geometric feature based methods focus on facial geometric

nformation analysis. Common classifier methods are SVM [16,17] ,

daboost [18] , LDA [20] , PCA [22] , and Random Forest [19] . Han

16] built geometric features from different 3D facial regions. Hu

t al. [17] extracted 3D facial shapes based on profiles and curva-

ure. Gilani et al. [20] selected 3D facial landmarks and geodesic

istances as gender features. Xia proposed a gender classification

ethod based on 3D Facial Symmetry analysis [19] . He also com-

ined averaged face information for gender classification [21] , and

xtended the methods to gender facial classification tasks [25] .

he advantages of the methods are based on 3D geometric feature

nalysis. The 3D geometric features are robust to texture noise.

owever, it was difficult to achieve a high quality triangular mesh

rom raw facial scanning data and the 3D geometric features were

imited by the automatic face cropping technology. Some influenc-

ng factors such as hair, beard, and facial expressions were difficult

o remove. 

In summary, such methods were limited by the raw facial data

n different levels. Therefore, we focus on the 3D nose region

ather than the entire face to build gender and ethnicity classifica-

ion. It is convenient to construct a triangular mesh form based on

he nose region. The reason is the geometric information in nose

egion is relatively stable for different facial expressions and hair

cclusion has little influence on the raw data in the nose region.

he effectiveness of the nose shape has been highlighted in some

acial data analysis research [24,26 and 27] . In the following sec-

ions, we discuss our nose shape analysis framework for gender

nd ethnicity classification. 
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Fig. 2. Nose curves on a 3D nose region. 
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. Pre-processing for 3D nose 

The first step in our method is to achieve high quality 3D nose

hape representation with certain facial landmarks. Therefore, we

ropose pre-processing of 3D noses from 3D facial data. The pro-

ess includes facial surface reconstruction from the raw data, facial

andmarks detection and nose shape construction. For facial sur-

ace reconstruction and facial landmarks detection, we apply two

ethods; a ball pivoting algorithm [28] and a shape regression al-

orithm [29] . Through the two methods, the 3D facial surface with

andmarks is constructed. Next, we are focus on nose shape con-

truction. 

The nose shape construction phase includes two steps; nose

egion division and nose curves extraction. Using nasal tip land-

arks, we divide the nose region of the 3D facial surface using

n iso-geodesic circle. We first compute the geodesic path G l be-

ween nasal tip and the center of the eyebrows. Next, we compute

eodesic distances from all vertexes to the nasal tip and select the

ertexes which have shorter geodesic distances than distance G l . Fi-

ally, we remove other vertexes and define the nose region. The

ose region meshes from different 3D facial data are aligned by

asal tip and geodesic distance G l . 

To develop nose shape features for accurate analysis, we pro-

ose an appropriate nose representation. The nose representation

hould satisfy several requirements: 1. the representation saves the

ain geometric information of the 3D nose; 2. the representa-

ion should have regular form for each nose; 3. the representation

hould not be too complex. On the basic of the above considera-

ions, we extract several curves from the 3D nose region to con-

truct nose shapes which we call “nose curves”. The nose curves

re chosen from the nose area that has obvious geometric features,

nd the curves represent the shape of the nose in a direct manner.

he definition of nose curves is a set of geodesic curves that are

rthogonal to the bridge of the nose. One end point of the nose

urve is in the geodesic path G l , and the other is in the geodesic

ircle that has a certain geodesic distance to the nasal tip. The nose

urves thus represent the geometric features of the nose region.

ig. 2 indicates the pattern of nose curves evaluated, and ( 3.1 ) is

he mathematical representation of the process. 

In ( 3.1 ), N c represents the set of nose curves. Nb is the bridge

f the nose (equal to G l ) and l is the point on Nb. G ( c, l ) is the

eodesic curve in the facial surface with two end points c and l .

dditionally, c is the point in the geodesic circle S that has a cer-

ain geodesic distance (the length of G l ) to the nasal tip. The tan-

ent vector of the geodesic path G ( c, l ) is perpendicular to the
angent vector of Nb at point l . By default, the specific geodesic

istance is the geodesic distance between the nasal tip and the

enter of the eyebrows. The surface of the nose region is con-

tructed by the N c . In Fig. 2 , we show the instances of several nose

urves in the 3D facial surface. N is the nasal tip, E is the cen-

er of the eyebrows, and Nb = G ( E, N ) , the distance of Nb , is equal

o N c = { G ( C1 , L 1 ) , G ( C2 , L 2 ) , G ( C3 , L 3 ) } . The nose shape is r epr e-

ented by N c . 

 c = { G (c, l) | l ∈ Nb, c ∈ S, T { G (c, l) }⊥ T { Nb} ( l) } (3.1) 

. Nose similarity measure 

The nose curve set represents the 3D nose shape. In this part,

e propose the nose similarity measure method based on nose

urves. Kendall [30] proposed shape space theory for curves mea-

urement previously. The shape space is a quotient space of iso-

etric Lie-group actions. Different transformations such as scal-

ng, translation, and rotation are Lie groups that act smoothly on a

anifold. The Lie group actions have been removed from the shape

pace. 

/G = { [ p] | p ∈ M } (4.1) 

In ( 4.1 ), G is a Lie group that is acting smoothly on a manifold

 . For p in M , the orbit of p is defined as [ p ]. In our measure-

ent method, shape space theory is used to build the nose curves

hape space for nose similarity measurements. The nose curves

hape space can be regarded as M/G and the nose curve can be

egarded as p. The measurement between curves is defined by the

eodesic distance in the space. The nose measurement result can

e achieved by the sum of the curves measurement. In ( 4.2 ), we

how the nose measurement between two noses. 

( N 1 , N 2 ) = 

∫ 
Nb 

G s (C 1 l , C 2 l ) d(l) (4.2)

N 1 and N 2 are two noses, which are represented by nose curve

ets C 1 and C 2, respectively. G s is the measurement between two

ose curves in the curves shape space. For the discrete case, the

ose measurement is shown in ( 4.3 ). Here, g is the number of nose

urves for one nose. 

( N 1 , N 2 ) = 

g ∑ 

l=1 

G s (C 1 l , C 2 l ) (4.3) 

To obtain the measurement of different noses, we should pro-

ide the function G s . G s is the geodesic distance between two nose

urves in shape space. The computation process of G s requires two

teps: mapping nose curves into the shape space and geodesic dis-

ance computation. To map the curves into the shape space, we

ropose a regular curve representation. The representation is a dis-

rete form which is shown in ( 4.4 ). 

 v = { v 1 , ..., v k } , C v (t) = v t , v t ∈ C v (4.4)

C v is the arc length parameterization of the nose curve, and it

ncludes a set of vectors to represent the curve, where v is a vector

n C v , which is defined by two points in the curve. Here, k is the

umber of points in the nose curve. In practice, k is a certain con-

tant that changes the continuity problem to a discrete problem.

n ( 4.5 ), we normalize the vectors in C v . The vectors in C v are rep-

esented by a direction vector multiplied by a specific step length.

he direction vector can be achieved by the original vector’s uniti-

ation. The specific value is the reciprocal of k. The representation

s invariant to scaling and translation. 

 v 
′ = { v 1 ′ , ..., v k ′ } 

v t ′ = v t / (k · ‖ 

v t ‖ 

) 

k ∑ 

t=1 

∥∥v t ′ 
∥∥ = 1 (4.5) 
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Fig. 3. The local coordinate system (X ′ , Y ′ , Z ′ ). P 1 , P 2 , N 1 and N 2 are certain facial 

landmarks whose positions are relatively robust to facial expressions. First, we com- 

pute Z ′ by the cross product of vectors 
−→ 

P 2 P 1 and 
−→ 

N 2 N 1 . The point Q is in the 
−→ 

N 2 N 1 . 

X ′ is 
−→ 

N 2 Q . Y 
′ is the cross product of X ′ and Z ′ . 
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Algorithm 1 Estimation function C gender . 

1: Input N s . 

2: for i = 1 to n // n is the number of classes in 3DNSN 

3: add d ( N s , N i ) to list // N i is the mean nose in class i. 

4: end for // the list can be regard as the index of the class of 3DNSN. 

5: sort (list) 

6: for i = 1 to k from list 

7: achieve the N male from male nose data in list i 

8: achieve the N female from female nose data in list i 

9: achieve p female by N male , N female , N s 
10: put p female into list( p ) 

11: end for 

12: for i = 1 to k from list 

13: achieve w i from N s , N i 
14: put w i into list( w ) 

15: end for 

16: C gender is achieved by list( p ) and list( w ). 
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The vectors in C ′ are transformed to the local coordinate sys-

tem ( Fig. 3 ) by T in ( 4.6 ). Using the new vector representation,

we achieve the geodesic distance between the two curves in shape

space using ( 4.7 ). By combining ( 4.3 ) and ( 4.7 ), we determine the

nose similarity measure result. 

 v 
′ = { T ( v 1 ′ ) , ..., T ( v k ′ ) } (4.6)

G s ( C 1 , C 2 ) = arccos 〈 C 1 , C 2 〉 (4.7)

5. 3D nose shape net construction 

Using the nose similarity measurement method, we can con-

struct a nose similarity matrix from a facial database. Based on

the nose similarity matrix, we propose the 3D nose shape net

(3DNSN). The 3DNSN represents an organized framework of 3D

noses. Different noses in 3DNSN are divided into different classes

by the nose similarity measure matrix. Using a clustering method,

we can determine the different nose classes. The 3DNSN includes

nose similarity information with different shapes. To build a gen-

der and ethnicity classifier, we propose an estimation function

based on the 3DNSN. In the following paragraphs, we discuss the

3DNSN construction and estimation function. 

3DNSN construction is based on the nose similarity matrix. The

clustering features are similarity values between different noses.

The similarity value can be regarded as the “distance” between

noses. We use the classical clustering method, Affinity Propagation

(AP), to determine different classes from the nose similarity matrix.

The AP method clusters data based on distance information. The

method is not limited by the dimension space because it adapts

the characteristics of the nose similarity matrix. We use the nose

similarity matrix as the input data in AP. Finally, we construct the

3DNSN with a two-level nose structure. 

For statistical computation, we propose the mean nasal shape

defined in ( 5.1 ) and ( 5.2 ), which can be regarded as the center

nose of a nose class. S represents the nose class in 3DNSN. For a

randomly selected nose N m 

in the nose class, the function V ( N m 

) is

the sum of the distance between nose N m 

and other noses N i in S.

The mean nasal shape of S is the nose with the minimum value of

V. 

S = { N 1 , ... N n } , V ( N m 

) = 

n ∑ 

i =1 

d( N m 

, N i ) (5.1)

N = arg min 

N m ∈ S 
V ( N m 

) (5.2)

Our estimation function is based on the 3DNSN. The basic hy-

pothesis of estimation function construction is that the nose shape
s consistent with gender and ethnicity characteristics. When dif-

erent noses have similar shape features, they have higher proba-

ility of sharing the same gender and ethnicity characteristics. The

deal solution of the classifier is inputting the source nose shape

nto the 3DNSN and searching the target nose shape for the class

ith the most similar shape features. The gender and ethnicity of

he target nose are based on the classification result of the source

ose. However, the solution is limited by the scale of 3DNSN. The

lassification result of 3DNSN is not accurate when the 3DNSN

oes not include a similar nose shape to the source. To solve the

roblem, we should consider more nose data in 3DNSN construc-

ion and combine several similarity measurements in 3DNSN to

chieve better classification results. In ( 5.3 ), we show the estima-

ion function C based on 3DNSN. 

 gender/ethnicity ( N s ) = 

k ∑ 

i =1 

w i ∗ p i (gender/ethnicity ) ( N s ) (5.3)

 j = 

π − d( N s , N j ) ∑ k 
i =1 d( N s , N i ) 

, j ∈ [0 , k ] (5.4)

p f emale ( N s ) = 1 −
(

min (d( N s , N f emale )) 

min (d( N s , N male )) + min (d( N s , N f emale )) 

)

(5.5)

p Asia ( N s ) = 1 −
(

min (d( N s , N Aisa )) 

min (d( N s , N Asia )) + min (d( N s , N other )) 

)
(5.6)

N s is the source nose. k is the number of classes we select in

DNSN. It is less than the sum of all classes in 3DNSN. In ( 5.4 ), w

s the weight of each clustering center in the estimation function,

nd is dependent on k . The value of w is computed by the similar-

ty measure from N s to each mean nose in the class. In ( 5.5 ), the

robability function p is computed in the class of 3DNSN. In cer-

ain classification problems, we achieve the most similar nose with

ertain classification characteristics and compute the rate with the

ost similar nose with other classification characteristics. For in-

tance, we want to achieve the probability that the nose comes

rom a female. We evaluate the most similar nose N female to N s from

emale nose data. We also achieve the most similar nose N male to

 s from male nose data. We compute the rate of the distances ra-

io. The distance d is inversely proportional to the probability p ,

herefore we subtract the distances ratio from 1 to achieve the

robability p . The ethnicity estimation is similar to the gender clas-

ification, as shown in ( 5.6 ). Algorithm 1 outlines the procedure to

ompute the gender classification estimation function C gender . 
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Fig. 4. The ROC results of facial classification with different parameters ( k = {1, 3, 

5}, g = {5, 7}). (a) is the gender classification result (for male). (b) is the ethnicity 

classification result (for white). 
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Table 1 

Gender classification rate in different ethnicity groups. 

Ethnicity group Group1(Asian) Group2(White) 

female 84.25% 89.95% 

male 78.75% 85.28% 

Table 2 

Ethnicity classification rate in different gender groups. 

Gender group Group1(female) Group2(male) 

Asian 95.85% 82.32% 

White 92.54% 94.45% 
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. Experiments 

In the following experiments, we build the 3DNSN from the fa-

ial databases FRGC2.0 and Bosphorus3D. The 3D facial database

RGC2.0 has been widely used in face recognition and facial clas-

ification. It includes three subsets: Fall20 03, Spring20 03, and

pring2004. Totally, FRGC2.0 includes about 4,000 3D face scans

rom 466 people, 1,848 scans of 203 females and 2,159 scans of

65 males. The facial data samples for each person have different

acial expressions. The 3D facial database Bosphorus3D includes

6 6 6 facial data from 105 persons. The facial data in Bospho-
us3D have different expressions, head poses, glasses and hair oc-

lusion. Regarding ethnicity, most samples belong to White and

sian classes. There are few samples of black and hybrid ethnic-

ties. To estimate gender and ethnicity classification performance

f the 3DNSN, we use three steps for illustration. First we dis-

uss some parameters that influence 3DNSN construction. Second,

e select different training sets from FRGC2.0 to estimate the data

ensitivity of 3DNSN. Finally, we compare the classification perfor-

ance of several methods and summarize the results. For classifier

valuation in FRGC2.0, we use the subset (Fall2003, 1829 samples)

f FRGC2.0 to build the 3DNSN and other samples (2264 samples)

o be the test set. For classifier evaluation in Bosphorus3D, we use

30 samples (6 ∗105) to build the 3DNSN and other samples to be

he test set. Some samples in Bosphorus3D have different head

oses and hair occlusion. The nose shape can’t be represented by

he whole nose region. We extract the nose curves from half face

rom the samples. 

.1. Parameters that influence estimation 

In 3DNSN, the parameter configuration decides the classifica-

ion performance. Specifically, the key parameters are the nose

urves number g in ( 4.3 ) and the class number k in ( 5.3 ). The nose

urves number g represents the precision of the nose shape repre-

entation. It decides the balance between nose measurement speed

nd accuracy. When g is too large or too small, the balance will be

roken, and the nose similarity measurement process will become

nstable. Parameter k influences the accuracy of classification in

DNSN. The 3DNSN includes dozens of subclasses in the first level,

here each subclass represents one type of nose shape from the

ose data set. Parameter k decides the range of nose shapes to be

sed in the classification process. The proper value of k provides

he balance between computation speed and classification accu-

acy. We select 810 samples from 240 people from FRGC2.0 ran-

omly for test purposes. 

In Fig. 4 , the ROC results show two fundamental conclusions.

irst, the ethnicity classification results are better than the gen-

er classification results on average. The differences between nose

hapes from different ethnicity groups facilitate recognition of eth-

icity relatively easily. Secondly, different parameter configurations

ffect the classification results without linear limits in a certain

ange. We think the reason is that the quality of the 3D scanning

ata is different. Nose shapes with different accuracies influence

he stability of the classification process. When the parameters are

ut of range, the classification results of 3DNSN become unstable

 k > 7, g > 7). In the following experiments, we use the parameter

onfiguration ( k = 3, g = 5) as this combination displays relatively

table classification performance. 
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Table 3 

Gender classification rate in different groups. 

Ethnicity group Group1(Asian female and White male) Group2(Asian male and White female) 

female 94.25% 89.95% 

male 98.75% 85.28% 

Table 4 

Ethnicity classification rate in different groups. 

Gender group Group1(Asian female and White male) Group2(Asian male and White female) 

Asian 98.85% 80.13% 

White 99.54% 82.31% 

Table 5 

Comparison of our method to earlier methods in FRGC2.0. 

Method Object Database Gender Classification Rate Ethnicity Classification Rate 

Female Male Average Asian White Average 

Ballihi 2012 3D face FRGC2.0 – – 84.98% – – –

Xia 2013 3D + 2D face FRGC2.0 – – 93.27 ± 5% – – –

Huang 2014 3D + 2D face FRGC2.0 94.91% 95.96% 95.50% 99.13% 99.90% 99.45% 

Gilani 2013 3D face FRGC2.0 – – 97.05% – – –

Xia 2015 3D face FRGC2.0 – – 92.4 ± 3.58% – – –

Xia 2017 3D face FRGC2.0 – – 93.61% – – 96.60% 

Our method 3D nose FRGC2.0 87.4% 92.3% 89.4% 89.2% 97.4% 93.3% 

Table 6 

Comparison of our method to earlier methods in Bosphorus3D. 

Method Object Database Gender Classification Rate Ethnicity Classification Rate 

Female Male Average Asian White Average 

Huang 2014 3D face Bosphorus3D 84.9% 87.9% 86.5% 84.1% 90.9% 87.4% 

Xia 2017 3D face Bosphorus3D 83.3% 87.2% 85.6% 88.1% 92.4% 90.2% 

Our method 3D nose Bosphorus3D 89.2% 92.3% 91.2% 89.2% 97.4% 93.3% 
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6.2. Data sensitive estimation 

In our framework, we process the gender and ethnicity classi-

fication tasks simultaneously. We use the same test set which has

been introduced in Section 6.2 . The gender and ethnicity charac-

teristics influence each other’s classification results. For example,

the gender classification results are not same for Asian and White

groups by nose shape analysis. The reason is that nose samples

from different gender and ethnicity groups have different degrees

of similarity. In Tables 1 and 2 , we show different classification re-

sults from the samples with different gender and ethnicity charac-

teristics in FRGC2.0. 

From Tables 1 and 2 , we arrive at two basic conclusions re-

garding classification tasks. First, the ethnicity classification results

are better than the gender classification results using nose shape

analysis. Second, the accuracy of gender classification results is dif-

ferent for people with different ethnicity characteristics. Different

ethnic groups have different nose clustering characteristics. The

ethnicity classification results of Asian females and White males

are much better. However, in gender classification, the Asian fe-

males and White males do not achieve better results. In summary,

the data suggests that Asian females and White males have lower

values of nose similarity in their respective groups. In Tables 3

and 4 , we show comparisons of classification results from differ-

ent groups in FRGC2.0. The results show that the classification re-

sults become much better when the Asian female and White male

groups are removed. 

6.3. Comparison and summary 

In Table 5 , we show the comparison between our method and

other methods in FRGC2.0. Some methods focus on single classifi-
ation problems. Several methods process the gender and ethnicity

lassification simultaneously. For a large database such as FRGC2.0,

he classification accuracy of our method is close to [27] , which

s similar to our method. However, the classification results of our

ethod are worse than the methods which are based on multi-

odal facial data and accurate geometric analysis models on aver-

ge. Our classification process is based on nose similarity measure-

ent results in 3DNSN. We do not use a classical machine learn-

ng framework to build the classifier. The classification accuracy is

ffected by the nose samples discussed in Section 6.2 . The advan-

ages of our method is robust to different facial expressions, head

oses and some occlusions (hair and glasses). In Table 6 , we com-

are the classification rate of several methods in Bosphorus3D. Ac-

ually, the methods based on the whole facial data are influenced

y the facial expressions, head poses, hair and glasses obviously.

ome samples in Bosphorus3D are influenced by different head

oses, glasses and hair occlusions. The complete surface can’t be

chieved. One side of the facial data is unclear. We extract the nose

urves from half face with clear features of the samples. The facial

ata is symmetrically. The nose curves from half face can be used

o represent the nose shape in a certain extent. 

In summary, the gender and ethnicity classification process

ased on nose shape analysis is feasible. The method can achieve

imilar classification rates to other methods which are based

n global facial data. Our method classification results will vary

epending on the nose similarity measurements available in a

ataset. In certain data sets, the classification rate of our method

an achieve the best results. However, our method is limited

y several factors; first, the representation of the nose data. In

ection 6.1 , we show the influence of parameter g with different

alues; second, the facial data from different groups in 3DNSN con-
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Table 7 

Gender classification rate based on nose samples. 

Nose number in 3DNSN Gender classification in average Ethnicity classification in average 

50 62.3% 66.52% 

100 72.35% 78.44% 

200 86.3 92.3% 
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truction. The classification rate of our method depends on the di-

ersity of the nose shapes in 3DNSN. If the facial data are not suf-

cient in number, or are not diverse enough for effective 3DNSN

onstruction, the classification results are poor and classification

ay become unstable. To show the influence of this factor, we

ompare the classification results with different numbers of nose

ata in 3DNSN construction ( Table 7 ). The classification rate is in

nverse proportion to the scale of the nose number in 3DNSN. 

. Conclusion 

We proposed a gender and ethnicity classification method by

onstructing a 3DNSN. The method is based on nose similarity

easurement. The nose similarity measurement is achieved by the

ombination of the nose’s curve distances, which are computed in

he curve shape space. Using nose data in classification has many

dvantages; nose data are relatively robust to facial expressions;

cclusions caused by hair, eyebrows, and beards hair have little

nfluence on the nose region; the 3D facial surface in nose re-

ion is smoother. In experiments, we show the classification results

nd demonstrate that the results of 3DNSN are similar to classi-

al methods based on global facial data. However, our classification

ethod is affected by the number of noses included in the 3DNSN.

n nose similarity measurements, the nose shape is considered as

 set of nose curves. The measurement is a simple linear combi-

ation of curve distances, which causes the global features of the

ntire surface of nose region to be lost. In future work, we will

ollect more nose shapes in a larger database to evaluate optimal

arameters for 3DNSN construction, and to improve nose similarity

easurement, we will evaluate effective computational methods to

etermine global measurement of the nose region. 
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